HOMEWORK 2 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

1. Section 1.6: Inverse functions and Logarithms

1.6.3. No; For example, even though $2 \neq 6, f(2)=f(6)=2$
1.6.5. Yes (by the horizontal line test)
1.6.16.
(a) $f^{-1}(3)=0$
(b) $f\left(f^{-1}(5)\right)=5$
1.6.18.
(a) By the horizontal line test
(b) Domain of $f^{-1}=$ Range of $f=[-1,3]$; Range of $f^{-1}=$ Domain of $f=$ $[-3,3]$
(c) 0
$(\mathrm{d}) \approx-1.8$
1.6.26. $f^{-1}(x)=\ln \left(-\frac{x}{2 x-1}\right)=\ln \left(\frac{x}{1-2 x}\right)$
1.6.35.
(a) $\log _{2}(8)=3$
(b) $\log _{3}\left(\frac{1}{9}\right)=-2$
1.6.36.
(a) $5^{-2}=\frac{1}{25}$
(b) 10
1.6.39. $\ln \left(\frac{\left(1+x^{2}\right) \sqrt{x}}{\sin (x)}\right)$
1.6.48.
(a) $x=\frac{\ln (7)-3}{2}$
(b) $x=\frac{5-e^{-3}}{2}$
1.6.58.
(a) $t=-a \ln \left(1-\frac{Q}{Q_{0}}\right)$; Gives the time it takes to recharge the capacitor to a given capacity Q
(b) Plug in $Q=0.9 Q_{0}$ into the equation in (a), and you get $t=-2 \ln (0.1) \approx$ 4.61 seconds

[^0]
1.6.60.

(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$

1.6.64.

(a) $\frac{\sqrt{15}}{4}$
(b) $\frac{24}{25}$ (use the fact that $\sin (2 x)=2 \sin (x) \cos (x)$)
1.6.65. If $\theta=\sin ^{-1}(x)$, then $\sin (\theta)=x$, then draw a triangle with hypothenuse 1 , and opposite side x , and then the adjacent side becomes $\sqrt{1-x^{2}}$, and so our answer becomes:

$$
\cos \left(\sin ^{-1}(x)\right)=\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}
$$

See the handout "Proof of the derivative of arccos" for a similar problem; Or look at your notes taken in section!
1.6.66. $\tan \left(\sin ^{-1} x\right)=\frac{\sin \left(\sin ^{-1}(x)\right)}{\cos \left(\sin ^{-1}(x)\right)}=\frac{x}{\sqrt{1-x^{2}}}$ by the result of number 65 !

2. Section 2.2: The limit of a function

2.2.2. If x approaches 1 from the left, then $f(x)$ approaches 3 ; If x approaches 1 from the right, then $f(x)$ approaches 7. No, left-hand-limits and right-hand-limits must be equal!

2.2.6.

(a) 4
(b) 4
(c) 4
(d) Undefined
(e) 1
(f) -1
(g) Does not exist (left and right-side limits not equal)
(h) 1
(i) 2
(j) Undefined
(k) 3
(l) Does not exist (h does not approach one fixed value as x approaches 5 from the left)
2.2.28. $-\infty$ (numerator approaches $e^{-5}>0$ while denominator approaches 0^{-}
2.2.29. $-\infty\left(x^{2}-9\right.$ approaches 0^{+}and $\ln \left(0^{+}\right)=-\infty$
2.2.40. The mass blows up to $\infty\left(\frac{v^{2}}{c^{2}}\right.$ goes to 1^{-}, so the denominator of the fraction goes to 0^{+}, and so the whole fraction goes to ∞)
3. Section 2.3: Calculating limits using the limit laws
2.3.4. $\frac{9}{12}=\frac{3}{4}$
2.3.10.
(a) If you plug in $x=2$, then the left hand side is not defined, but the right hand side is
(b) The above equation holds if $x \neq 2$, but the point of limits is that in this case you don't care about the value at 2 ! So in this case, the equality is correct!
2.3.13. Does not exist (left-hand-limit is $-\infty$ because the numerator tends to 4 and the denominator tends to 0^{-}while the right-hand-limit is ∞ because the numerator tends to 4 and the denominator tends to 0^{+})
2.3.17. 8
2.3.18. 3 (use the fact that $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$)

[^0]: Date: Wednesday, February 2nd, 2011.

